Main Article Content

Abstract

Human health concerns are one of the important consequences of air pollution. The low air quality of each city will have long-term impacts such as global warming and anthropogenic greenhouse effect Banjarmasin becomes one of the cities in Indonesia that still has a low air quality index (AQI) on certain days.  This problem makes the need for accurate air quality forecasts can be one of the long-term preventive measures. Therefore, this study aims to conduct paticulate matter forecasts in banjarmasn city within 1 year. Air quality forecasts in Banjarmasin against PM are done with Tableau. Exponential smoothing with additive and multiplicative modeling into applied models. Additive and multiplicative forecasts show that the state of air quality for the parameters of the PM of Banjarmasin City in 2021 is still relatively safe because it does not harm the health of living things. In addition, it was found that additive modeling provides results with better accuracy compared to multiplicative modeling in performing air quality forecasts.

Keywords

Banjarmasin, Particulate Matter, Tableau, additive, multiplicative

Article Details

How to Cite
Ahmad Yusuf, Kusrini, & Alva Hendi Muhammad. (2021). PARTICULATE MATTER (PM) FORECASTING IN BANJARMASIN USING ADDITIVE AND MULTIPLICATIVE EXPONENTIAL SMOOTHING. J-HIMEL, 2(2), 1-4. Retrieved from https://j-himel.org/j-HIMEL/article/view/104

References

  1. Ahmad, E. F., & Santoso, M. (2016). Analisis Karater-isasi Konsentrasi dan Komposisi Partikulat Udara (Studi Case: Surabaya). Jurnal Kimia Valensi, 2(2), 97–103.
  2. Akhtar, N., NaziaTabassum, Perwej, A., Perwej, Y., Akhtar, N., Na-ziaTabassum, Perwej, A., & Perwej, Y. (2020). Data ana-lytics and visualization using Tableau utilitarian for COVID-19 (Coronavirus). Global Journal of Engineer-ing and Technology Advances, 3(2), 028–050. https://doi.org/10.30574/gjeta.2020.3.2.0029
  3. Badan Pusat Statistik Kota Banjarmasin. (2021). Kota Banjarmasin dalam Angka 2021. Badan Pusat Statistik Kota Banjar-masin.
  4. Damayanti, S., & Lestari, P. (2020). Receptor Modelling of particu-late matter at residential area near industrial region in Indonesia using Positive Matrix Factorization. E3S Web of Conferences, 148, 03003. https://doi.org/10.1051/e3sconf/202014803003
  5. Dwirahmawati, F., Nasrullah, N., & Sulistyantara, B. (2018). Ana-lisis Perubahan Konsentrasi Nitrogen Dioksida (NO2) pada Area Bervegetasi dan Tidak Bervegetasi Di Jalan Simpang Susun. Jurnal Lanskap Indonesia, 10(1), 13–18. https://doi.org/10.29244/jli.v10i1.18356
  6. Fernando, J. A. (2017). Identifikasi Kontribusi Pencemaran PM10 Menggunakan Metode Reseptor Chemical Mass Balance (CMB) (Studi Kasus: Kota Pekanbaru, Provinsi Riau). Jurnal Teknik Lingkungan, 6(2). http://eprints.undip.ac.id/51743/
  7. Hanafi, R. S. (2018). Identifikasi sumber logam yang terkandung pada SPM (suspended particulate matter) di Kecama-tan Paiton Kabupaten Probolinggo denga Aplikasi Positive Matrix Factorization (PMF) [Other, Universi-tas Diponegoro]. http://eprints.undip.ac.id/68497/
  8. Himawan, H., & Silitonga, P. D. (2020). Comparison of Forecasting Accuracy Rate of Exponential Smoothing Method on Admission of New Students. Journal of Critical Re-views, 7(2).
  9. Hirzi, L. A. (2018). Identifikasi Sumber Logam dalam SPM (Sus-pended Particulate Matter) di Kecamatan Bangsri Ka-bupaten Jepara dengan Aplikasi PMF (Positive Matrix Factorization) [Other, Universitas Diponegoro]. http://eprints.undip.ac.id/67692/
  10. Huboyo, H., Budihardjo, A., & Primabudi, E. (2008). Preliminary Study on Source Apportionment of Ambient Air In Se-marang City Using Cmb Model (Case Study In Pe-durungan Site). Environmental Science. https://www.semanticscholar.org/paper/Preliminary-Study-On-Source-Apportionment-Of-Air-In-Huboyo-Budi-hardjo/edfc9585437897028eed4abd338ab8870d2418fd
  11. Inayah, N., Suhel, H., & Andriani, M. (2019). Penyajian Peta Kuali-tas Udara Kota Banjarmasin (SO2 dan NO2). POROS TEKNIK, 11(1), 07–11. https://doi.org/10.31961/porosteknik.v11i1.799
  12. Jena, B. (2019). An Approach for Forecast Prediction in Data Ana-lytics Field by Tableau Software. International Journal of Information Engineering and Electronic Business, 11, 19–26. https://doi.org/10.5815/ijieeb.2019.01.03
  13. Kementerian Lingkungan Hidup dan Kehutanan. (2020). Indeks Kualitas Udara. Kementerian Lingkungan Hidup dan Kehutanan.
  14. Lestari, P., & Mauliadi, Y. D. (2009). Source apportionment of particulate matter at urban mixed site in Indonesia us-ing PMF. Atmospheric Environment, 43(10), 1760–1770. https://doi.org/10.1016/j.atmosenv.2008.12.044
  15. Negara, C. K., Erliani, S., & Gardis, F. (2020). The Influence of Mac-aranga Leaf Tea as A Complementary Nursing Therapy Solution for Patients with Diabetes Mellitus in The De-abetic Foot Poly of Ulin Regional Public Hospital Ban-jarmasin. J-HIMEL, 1(1), 1–5.
  16. Niswanti, A., Mahreda, E. S., Yamani, A., & Atmowijoyo, T. (2016). Kadar Debu Ambien Di Terminal Induk KM 6 Banjar-masin Provinsi Kalimantan Selatan dan Dampaknya terhadap Kesehatan Masyarakat. EnviroScienteae, 9(3), 124–133. https://doi.org/10.20527/es.v9i3.1993
  17. Pakpahan, V. M., & Pinem, S. (2021). Prakiraan Kebutuhan Energi Listrik Kota Parapat Tahun 2018 Sampai Dengan 2022 Sebagai Kawasan Strategis Nasional Danau Toba. Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi Dan Komputer, 5(1), 1–11. https://doi.org/10.31961/eltikom.v5i1.177
  18. Ridzky, G. A., Zaman, B., & Huboyo, H. S. (2017). Identifikasi Kontribusi Pencemaran PM10 dengan Metode Reseptor Positive Matrix Factorization (Pmf) Studi Kasus: Kota Pekanbaru Provinsi Riau. Jurnal Teknik Lingkungan, 6(2), 1–12. https://www.neliti.com/publications/191385/
  19. Rixson, L., Riani, E., & Santoso, M. (2016). Karakterisasi Paparan Long Term Particulate Matter di Puspiptek Serpong-Kota Tangerang Selatan. Jurnal Ilmiah Aplikasi Isotop dan Radiasi, 11(1), 51–64. https://doi.org/10.17146/jair.2015.11.1.2703
  20. Santoso, M., Hopke, P. K., Hidayat, A., & Diah Dwiana L. (2008). Sources identification of the atmospheric aerosol at ur-ban and suburban sites in Indonesia by positive matrix factorization. Science of The Total Environment, 397(1), 229–237. https://doi.org/10.1016/j.scitotenv.2008.01.057
  21. Santoso, M., Lestiani, D. D., & Markwitz, A. (2013). Characteriza-tion of airborne particulate matter collected at Jakarta roadside of an arterial road. Journal of Radioanalytical and Nuclear Chemistry, 297(2), 165–169. https://doi.org/10.1007/s10967-012-2350-5
  22. Santoso, M., Lestiani, D. D., Mukhtar, R., Hamonangan, E., Syafrul, H., Markwitz, A., & Hopke, P. K. (2011). Preliminary study of the sources of ambient air pollution in Serpong, Indonesia. Atmospheric Pollution Research, 2(2), 190–196. https://doi.org/10.5094/APR.2011.024
  23. See, S. W., Balasubramanian, R., Rianawati, E., Karthikeyan, S., & Streets, D. G. (2007). Characterization and Source Ap-portionment of Particulate Matter ≤ 2.5 μm in Sumatra, Indonesia, during a Recent Peat Fire Episode. Environ-mental Science & Technology, 41(10), 3488–3494. https://doi.org/10.1021/es061943k
  24. Siregar, B., Butar-Butar, I. A., Rahmat, R. F., Andayani, U., & Fahmi, F. (2017). Comparison of Exponential Smoothing Methods in Forecasting Palm Oil Real Production. Journal of Physics: Conference Series, 801, 012004. https://doi.org/10.1088/1742-6596/801/1/012004
  25. Yunus, S., Rashid, M., Mat, R., Baharun, S., & Che Man, H. (2019). Characteristic of the PM10 in Urban Environment of Makassar. Journal of Urban and Environmental Engi-neering, 198–207. https://doi.org/10.4090/juee.2019.v13n1.198207